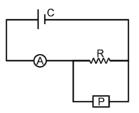
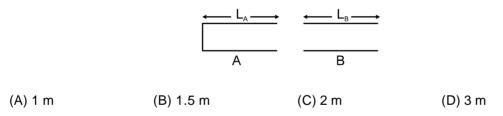


DPP No. 52

Total Marks : 25


Max. Time : 26 min.

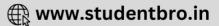
Topics : Current Electricity, Sound, Fluids, Capacitor, Rotation


Type of Questions
Single choice Objective ('-1' negative marking) Q.1 to Q.4
Subjective Questions ('-1' negative marking) Q.5
Comprehension ('-1' negative marking) Q.6 to Q.8

	M.M., Min.		
(3 marks, 3 min.)	[12, 12]		
(4 marks, 5 min.)	[4, 5]		
(3 marks, 3 min.)	[9, 9]		

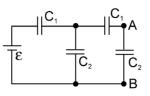
1. An ammeter A of finite resistance and a resistor R are joined in series to an ideal cell C. A potentiometer P is joined in parallel to R. The ammeter reading is I_0 & the potentiometer reading is V_0 . P is now replaced by a voltmeter of finite resistance. The ammeter reading now is I and the voltmeter reading is V.

2. The two pipes are submerged in sea water, arranged as shown in figure. Pipe A with length $L_A = 1.5$ m and one open end, contains a small sound source that sets up the standing wave with the second lowest resonant frequency of that pipe. Sound from pipe A sets up resonance in pipe B, which has both ends open. The resonance is at the second lowest resonant frequency of pipe B. The length of the pipe B is :


3. A body of density ρ is dropped from rest from a height 'h' (from the surface of water) into a lake of density of water σ ($\sigma > \rho$). Neglecting all dissipative effects, the acceleration of body while it is in the lake is:

(A) g $\left(\frac{\sigma}{\rho}-1\right)$ upwards	(B) g $\left(\frac{\sigma}{\rho}-1\right)$ downwards
(C) $g\left(\frac{\sigma}{\rho}\right)$ upwards	(D) g $\left(\frac{\sigma}{\rho}\right)$ downwards

4. In the above problem, the maximum depth the body sinks before returning is:


(A)
$$\frac{h\rho}{\sigma - \rho}$$
 (B) $\frac{h\rho}{\sigma + \rho}$
(C) h $\frac{\rho}{\sigma}$ (D) h $\frac{\sigma}{\rho}$

5. Find the potential difference between points A and B of the system shown in the figure, if the emf is equal to

 \mathcal{E} = 110V and the capacitance ratio $\frac{C_2}{C_1}$ = η = 2.0.

COMPREHENSION

A thin uniform rod having mass m and length 4ℓ is free to rotate about horizontal axis passing through a point distant ℓ from one of its end, as shown in figure. It is released, from the horizontal position as shown :

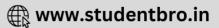
6. What will be acceleration of centre of mass at this instant

(A)
$$\frac{3g}{7}$$
 (B) $\frac{2g}{7}$ (C) $\frac{3g}{5}$ (D) $\frac{2g}{5}$

7. What will be normal reaction due to hinge at the instant of release

(A) mg (B)
$$\frac{mg}{2}$$
 (C) $\frac{4mg}{7}$ (D) $\frac{\sqrt{2}mg}{7}$

8. What will be angular velocity of rod when it becomes vertical


(A)
$$\sqrt{\frac{6g}{7\ell}}$$
 (B) $\sqrt{\frac{12g}{7\ell}}$ (C) $\sqrt{\frac{3g}{2\ell}}$ (D) $\sqrt{\frac{3g}{7\ell}}$

Answers Key

1.	(B)	2.	(C)	3.	(A)	4.	(A)
----	-----	----	-----	----	-----	----	-----

5.
$$V_{AB} = \frac{\epsilon}{(1+3\eta+\eta^2)} = 10V$$
 6. (A)
7. (C) 8. (A)

Get More Learning Materials Here :

<u>Hints & Solutions</u>

2. (C) For pipe A, second resonant frequency is third

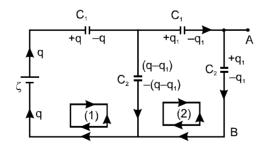
harmonic thus f = $\frac{3V}{4L_A}$

For pipe B, second resonant frequency is second

harmonic thus f = $\frac{2V}{2L_B}$

Equating, $\frac{3V}{4L_A} = \frac{2V}{2L_B}$

$$\Rightarrow L_{B} = \frac{4}{3} L_{A} = \frac{4}{3} .(1.5) = 2m.$$

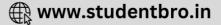

5. [Ans:
$$V_{AB} = \frac{\varepsilon}{(1 + 3\eta + \eta^2)} = 10V$$
]

The distribution of charges is shown in fig. In closed loop (1)

$$\varepsilon - \frac{q}{C_1} - \frac{(q-q_1)}{C_2} = 0$$
 ...(i)

In closed loop (2) $-\frac{q_1}{C_1} - \frac{q_1}{C_2} + \frac{q-q_1}{C_2} = 0$

or
$$q = \left(\frac{2C_1 + C_2}{C_1}\right) q_1$$



From Eq. (i), $\varepsilon - \frac{q_1}{C_1} - \frac{q}{C_2} + \frac{q_1}{C_2} = 0$

or
$$\varepsilon + \frac{q_1}{C_2} = q \left(\frac{C_1 + C_2}{C_1 C_2} \right)$$

or
$$\varepsilon + \frac{\mathbf{q}_1}{\mathbf{C}_2} = \left(\frac{2\mathbf{C}_1 + \mathbf{C}_2}{\mathbf{C}_1}\right) \mathbf{q}_1 \left(\frac{\mathbf{C}_1 + \mathbf{C}_2}{\mathbf{C}_1 \mathbf{C}_2}\right)$$

Get More Learning Materials Here :

$$\therefore \quad q_1 = \frac{\varepsilon C_2 C_1^2}{C_1^2 + 3C_1 C_2 + C_2^2}$$
$$\therefore \quad \phi_A - \phi_B = \left| \frac{-q_1}{C_2} \right| = \frac{q_1}{C_2}$$
$$= \frac{\varepsilon C_1^2}{C_1^2 + 3C_1 C_2 + C_2^2}$$
$$= \frac{\varepsilon}{1 + 3\frac{C_2}{C_1} + \frac{C_2^2}{C_1^2}}$$
$$= \frac{\varepsilon}{1 + 3\eta + \eta^2} = 10V$$

$$\left(\because \frac{C_2}{C_1} = \eta = 2 \right)$$

6. Torque equation

$$\tau_{\text{Hinge}} = I_{\text{Hinge}} \propto$$
$$\text{mg} \ \ell \ = \left(\frac{m(4\ell)^2}{12} + m\ell^2\right) \propto$$

$$\frac{3g}{7\ell} = \infty$$

Tangential acceleration = $\infty \ell = \frac{3g}{7\ell}$

Radial acceleration = $\omega^2\,\ell$ = 0

Ans.
$$\frac{3g}{7}$$

7. mg - N₁ = m
$$\left(\frac{3g}{7}\right)$$

$$N_1 = \frac{4mg}{7}$$
$$N_2 = 0$$

8. Energy conservation

$$mg \ \ell \ = \ \frac{1}{2} \ . \ \frac{7}{3} \ m \ \ell^2 \ \omega^2$$
$$\sqrt{\frac{6g}{7\ell}} \ = \ \omega$$

Get More Learning Materials Here :

🕀 www.studentbro.in